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That such bonding occurs in a large group of 
related compounds, which are in turn related to the 
nucleic acids and nucleo-proteins, is of considerable 
interest and importance since it is usually assumed 
that  these latter compounds are held together in 
biological systems by hydrogen bonding between the 
neighbouring groups. Indeed, Watson & Crick (1953) 
have suggested that  the macromolecule of deoxyribo- 
nucleic acids consists of a double helix, in which two 
helical chains are coiled round the same axis into the 
pyrimidine and purine bases on the inside of the helix. 
The two helical chains are held together by hydrogen 
bonds between the pyrimidine and purine bases. These 
hydrogen bonds must be of the type found in the 
simpler compounds. 

The authors' thanks are due to the Australian 
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to the Research Grants Committee of the University 
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tance that  made this investigation possible. Dr A. McL. 
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modified Patterson projection, and Dr J. Miller's 
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Certain features common to structures with one-dimensional position disorder and to related 
ordered layer structures (OD-struetures) are discussed, the corresponding concepts are introduced 
by examples and the corresponding features of Fourier transforms are deduced. OD-structures are 
systematized and a glossary of terms is added. In an Appendix a nomenclature for plane space 
groups in three dimensions, which corresponds to the international nomenclature for three-dimen- 
sional space groups, is suggested. 

I n t r o d u c t i o n  

In the course of investigating the disorder phenomena 
exhibited by fl-wollastonite (Jeffery, 1953) and Mad- 
drell's salt (Dornberger-Schiff, Liebau & Thilo, 1955), 
it became evident that  an adequate description of 
these and kindred structures cannot be expressed 
simply in terms of the current language of 'classical' 
crystallography, which, by its very nature, can be 
applied to fully ordered structures only. I have thus 
been led to attempt a generalization of these classical 
concepts wide enough to cover what I propose to call 
'0D-structures' (order-disorder structures). 

AC9 

This term should--according to my proposal-- 
embrace structures with stacking disorder (l-dimen- 
sionale Lagefehlordnung) if the lack of order in the 
stacking results (as usual) from the fact that  there 
are two or more geometrically--and hence energeti- 
cally--equivalent ways in which neighbouring layers 
may be placed with respect to one another. I t  should 
embrace also such structures which differ from these 
disordered structures only by the regularity of their 
stacking. 

Before an attempt at the development of a general 
theory is made I propose to discuss in the present 
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paper some well known examples of OD-structures in 
order to familiarize the reader both with the kind of 
problems to be tackled and with some concepts to be 
used for that  purpose. In particular, we shall arrive 
at certain conclusions with regard to the distribution 
of structure amplitudes in reciprocal space which can 
be used to help in the structure analysis of OD- 
structures. The new terms will be introduced and 
defined in the course of the discussion of examples; 
a list of these definitions is also given in Appendix II  
for convenience. 

E x a m p l e s  of OD-s truc tures  of type A 

1st example: arrangements of close-packed spheres (e.g. 
cobalt) 
These OD-structures can be characterized in the 

following way: The structure consists of identical 
layers, the symmetry of each of these layers, taken by 
itself, corresponds to the space group P6/mmm, except 
for the fact that  there is no periodicity in the direction 
of the hexad. According to the notation proposed in 
Appendix I we shall denote this symmetry by 
P(6/m)mm. 

Any pair of successive layers of a close packed 
structure is, however, of lower symmetry, namely 
P(-3)2/ml. 

The relation between two successive layers is such 
that  a parallel displacement of the one by either of 
the vectors sl or s~ would make that  layer coincide 
with the other, where 

s l = ½ a + ~ b + e ;  s 2 =  - ( ½ a + ~ b ) + e  (1) 

and a and b denote hexagonal basic translational 
vectors within the layer and e is a vector perpendicular 
to a and b. 

The succession of vectors si may be used to charac- 
terize the stacking of layers; therefore I propose to call 
these vectors stacking vectors. Obviously, other vectors 
differing from those given by m a + n b  (with m, n 
integers) could have been chosen equally well. But 
we shall agree to call in each case the shortest (or one 
of the shortest) vectors of a set of equivalent vectors 
the stacking vector. 

A set of layers which--~ke the layers of a close- 
packed structure---may be brought into coincidence 
by parallel displacement with a given layer shall be 
called a set of translatable layers. 

The two stacking vectors s i and s~ are related to 
one another by the hexad axis of the single layer. 
Thus two pairs of layers characterized by the stacking 
vectors s 1 and s~ respectively differ only by their 
orientation, and are thus equivalent. 

As we know, there exist whole 'families' of close- 
packed structures. The structures of each family 
consist of the same kind of layers, and the relative 
position of two given successive layers is characterized 
by one or the other of the stacking vectors s~ or s~. 
The different members of such a family differ in the 

sequence of stacking vectors and can hence be char- 
acterized by this sequence. The cubic close-packed 
structures have stacking vectors s 1 throughout the 
structure, (or s 2 throughout, if in different orienta- 
tion); the normal hexagonal close packed structure 
has an alternation of s 1 and s2; irregular sequences 
are characteristic of disordered structures. 

I propose to denote, quite generally, by the term 
OD-structures of type A, structures consisting of a set 
of equal translatable layers, with successive layers 
related by one of several stacking vectors s~, which 
are derived from one another or from the inverse of 
the other by the symmetry elements of a single layer. 

Although in some respects the stacking vectors si 
play a similar role to that  of the translational vectors 
of an ordered structure, they must not be mistaken 
for translations: parallel displacement of the whole 
structure by si will, in general, not bring it into coin- 
cidence with itself. 

By the term family of OD-structures of type A I mean 
a set of such structures consisting of the same kind 
of layers with the same set of stacking vectors si and 
differing only by the sequence of stacking vectors s~ 
which, therefore, is characteristic for a particular 
member of the family. 

Although, in our example, as we have mentioned 
above, the symmetry of a pair of layers is P(3)2]ml, 
the symmetry of a structure belonging to this family 
may be even lower. The minimum symmetry which a 
member may possess is always characteristic of the 
whole family; in the case considered it is P(3)ml. 
! propose to call the symmetry of the layer (in our 
example, _P(6/m)mm) the A-symmetry; the minimum 
symmetry in the family (in our example, P(3)ml) 
q~-symmetry. In referring to elements of A-symmetry 
which are not at the same time symmetry elements 
of the whole structure we shall put the corresponding 
symbols in ( } brackets--in our example (6} and (m} 
perpendicular to the c axis--to distinguish them from 
symmetry elements of the whole structure in our 
example m perpendicular to the a axis. 

As the concept of a unit cell is applicable only to the 
fully ordered members of a family, it is not suitable 
for the description of the general member of a family. 
I t  is possible, however, to define a term which refers 
to a single layer only and is the analogue to the term 
'unit cell'. Such a unit cell of an individual layer we 
shall call structural unit. The structural unit is bounded 
by two pairs of parallel planes containing the basic 
translational vectors a' and b'  of the periodic arrange- 
ment within the layer, respectively. The electron- 
density distribution QA(r) of a single layer is the sum 
of the electron-density distributions Q o , ( r - m a ' -  nb') 
of the structural units: 

~A(r) = ~ ~ Q0,(r--ma'--nb') (3) 
where m n 

~0,(r) = ~o,(x'a'+y'b'+z'e') = 0 unless 0 _< x' < 1 
0 _ < y ' <  1 (4) 
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and e' is a vector not co-planar with a' and b', or not 
parallel to the layer plane, i.e. a plane containing the 
translations a' and b'. 

I t  is convenient to choose the vectors a', b', e' 
according to the following general rules, which cor- 
respond to the rules (I)-(III) given by Donnay & 
Nowacki {1954) : 

(I) wherever possible, the vectors a', b', e', should 
coincide with symmetry directions; 

(II) the plane cell defined by a' and b' should have 
the same point-group symmetry as the plane 
lattice of a single layer; 

(III) the plane cell should be the smallest possible 
cell that  obeys (I) and (II); 

besides, the length of e' should be chosen so as to make 
the component w 1 of the stacking vector Sl, defined 
by 

t ! r 

si = ula +v lb '+w~e ' ,  (5) 

equal to 1. A vector triple a', b', e' chosen in this way 
and the corresponding components will be denoted by 
letters without dashes. As can easily be shown, the 
traditional choice of axes according to the above- 
mentioned rules ensures that  the components wi of 
all stacking vectors related to each other by A- 
symmetry, i.e. of the vectors 

s~ = uia+vib+wie , . (6) 

are equal and thus equal to 1, and that  all "vectors 
ui~lq-vib have the same length. 

These conventions enable us to make statements 
about OD-structures that  correspond to statements 
about numbers of atoms in the unit cell in the case of 
fully ordered structures. 

In our example, the structural unit contains one 
atom only. All atoms are, therefore, in positions equiv- 
alent to one another with respect to the translations 
a and b. From this it follows that  the number of 
closest neighbours, not only in the same layer but also 
in the preceding or succeeding layer, and thus the 
coordination number, is the same for all atoms; this 
number is thus independent of the particular sequence 
of stacking vectors si, i.e. it is the same for all atoms 
and for all members of this family. The coordination 
polyhedron, however, is not the same for atoms of 
a layer between like, and a layer between unlike, 
stacking vectors; this is due to the fact that  in our 
example the coordination polyhedron contains atoms 
not of one but of both neighbouring layers and that  
the relative position of these depends on the sequence 
of the si. 

2nd example: graphite (hexagonal, rhombohedral, turbo- 
8tratic) 
The A-symmetry is P(6/m)mm, the q~-symmetry 

P(3)ml, and also the stacking vectors are related to 
a, b and e in the same way as in the first example. 
There are, however, two carbon atoms in the structural 
unit, occupying positions which are equivalent with 

respect to the A-symmetry, but not equivalent with 
respect to the translations or the ~-symmetry. The 
stacking vectors and atomic positions are such that  
only one atom of each structural unit has a closest 
neighbour in the preceding layer. Therefore the number 
of closest neighbours is not independent of the sequence 
of stacking vectors. If one of the stacking vectors is 
repeated (rhombohedral structure), each atom has 
exactly one closest neighbour either in the preceding 
or in the succeeding layer; if the two stacking vectors 
alternate, half the atoms have one closest neighbour 
in the succeeding as well as in the preceding layer, 
and the other half have neither. 

Thus, in this example, the coordination number does 
depend on the sequence of stacking vectors. 

3rd example: SiC, zincblende-wurtzite 
These families of OD-structures are very closely 

related to the first example. Their A-symmetry is 
P(6)mm, however, instead of P(6/m)mm. The ~- 
symmetry is P(3)m, as in the first example, and also 
the stacking vectors s i and s 2 are related in the same 
way to a and b as in the examples already given. 

The structural unit consists of one carbon and one 
silicon atom, with coordinates (0, 0, zl) and (0, 0, z2) 
respectively (z i = 0, z~ ~ ~). All C atoms are thus ill 
positions equivalent with respect to the translations, 
and so are all Si atoms. The closest Si neighbours of 
a C atom belong partly to the same layer as the C 
atom, partly to the preceding layer; the closest C 
neighbours of a Si atom partly to the same, partly 
to the succeeding layer (or vice versa). Therefore, not 
only atomic distances, and coordination numbers, but 
also the coordination polyhedra, are independent of 
the sequence of stacking vectors. 

There is a considerable number of compounds 
crystallizing in structures which belong to this family, 
e.g. crystals with a zincblende or wurtzite arrange- 
ment. Some of them, e.g. CdS and ZnS, exist in both 
forms, and of the latter, crystals with stacking disorder 
are known to exist (Jagodzinski, 1949; Krumbiegel & 
Jost, 1955). X-ray diagrams of such crystals show 
distinct maxima on the diffuse reciprocal-lattice rods 
corresponding to reciprocal-lattice points of the 
simpler ordered arrangements: the wurtzite and zinc- 
blende arrangements and an arrangement with a four- 
layer periodicity. From these maxima it is possible to 
judge whether the sequence can be regarded as con- 
sisting of ordered parts with occasional mistakes and, 
if so, what the character of these ordered parts is; 
or whether there is a repetition of one of the stacking 
vectors or a more complicated sequence. 

Care has to be taken not to misjudge such maxima 
as reflexions of an ordered crystal. If this mistake is 
made, the attempt to index the 'reflexions' will, in 
general, lead to fictitious systematic non-space-group 
absences; if the real cause of these is not recognized 
the determination of space group and of the structure 

40* 
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will be erroneous, as was the case with fl-wollastonite 
(Barnick, 1936) and with Currol's salt (Plieth & 
Wurster, 1951). 

4th example: orthoboric acid 
The fully ordered structure of boric acid prepared 

from solution was first given by Zachariasen (1934), 
and has been further refined by the same author 
(1954). I t  is triclinic, space group P i ,  and can be 
described as consisting of equal layers with a A- 
symmetry  P(6/m)mm and an alternation of two of the 
12 A-symmetrical stacking vectors the components of 
which cannot be approximated to by the ratios of 
small integers. Cowley (1953), using electron-diffrac- 
tion methods, has found tha t  boric acid prepared 
from the vapour phase is in a disordered state and 
has an apparent hexagonal symmet ry - -as  is to be 
expected if the sequence of stacking vectors is as- 
sumed to be statistical. 

The stacking vectors found by  Cowley for the dis- 
ordered structure differ from those in the trichnic 
ordered structure. This may, however, be due to mis- 
takes in the choice of the phases of the coefficients of 
his Fourier series (see below). 

T h e  d i f f r a c t i o n  p h e n o m e n a  of O D - s t r u c t u r e s  
of  t y p e  A 

Naturally,  our knowledge of these and other famiUes 
of OD-structures is based on the interpretation of 
X-ray diagrams of these structures. For  this inter- 
pretat ion we may use the concept of the Fourier 
transform (F-transform for short) F(r*)  of the elec- 
tron-density distribution within the crystal, which is 
proportional (with the usual correction factors) to the 
amphtude of the diffracted waves. We shall refer 
reciprocal vectors to a basic vector triple a*, b*, e* 
reciprocal to the triple a, b, e, defined above. 

As follows from well known theorems, this F-trans- 
form may be obtained as the product of the F-trans- 
form F0(r* ) of the structural unit, with two functions 
GA(r* ) and G~(r*)" 

$'(r*) = GA(r*).Gs(r*).Fo(r* ) = G(r*).Fo(r*), (7) 

where GA(r*) depends only on the distribution of 
structural  units within the layer, Gs(r*) on the distri- 
bution of layers within the structure and G(r*) on the 
distribution of structural  units within the structure. 
They ~r~ d~fined ~ 

GA(r*) = ~v ~v exp [2zri(r*, ma+nb) ]  
m n 

= _,Y ~ exp [2~ri(m~+n~)], (8) 
m n 

G~(r*) = ~ exp [27d(r*, tp)] 
P 

= flY,' exp [2zri(Up~e+ Vpr/+p~)],  (9) 
p 

where tp is the sum of the first p stacking vectors 
(in the sequence present in the structure), and Up 

and Vp are the sums of the components ui and v~, 
respectively, of these vectors. 

GA(r*), GJr*)  and G(r*) are the F-transforms of 
DA(r), D J r )  and D(r), respectively, i.e. the distribu- 
tion functions of structural units within the single 
layer, of layers within the structure and of structural  
units within the structure. These distribution func- 
tions are defined as 

DA(r) = .2~ .2~ ~ ( r - m a - n b )  
m n 

Ds(r ) = _,Y 5 ( r - t p )  
P (10) 

D(r)  -- ~ ~ Z 5 ( r - m a . n b - t p )  
m n p 

= Z ~" Z ~(r-tmnp) 
m n p 

with 
~(r) = I exp [ -2zd ( r ,  r*)]dT* , (11) 

" ' ' "  (o) I I I I I I  
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Fig. 1. (a) (i) Representative points within a layer DA(r). 
(ii) Absolute value of corresponding reciprocal distribution 
laA(r*)t. 

(b) (i) Representative points of stacking Ds(r). (ii) JGs(r*)[. 
(c) (i) Stacking lattice. (ii) Reciprocal stacking lattice. 
(d) (i) Representative points of the distribution D(r). 

(ii) [G(r*)]. 
(e) (i) Distribution lattice. (ii) Reciprocal distribution 

lattice. 
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(a) 

- ~ -  ~ p ~  

(b) (,:') 
Fig. 2. Basal projection of points resulting from an addition of stacking vectors. (a) P(3), all points lie on a lattice. (b) P(4)mm, 

with ui and vi rational numbers, all points lie on a lattice. (c) P(4)mm, with ui and vi only approximately rational, all points 
lie near the points of a lattice. 

where the integral  has to be taken over all reciprocal 
space and is zero except for r = 0. 

Thus DA(r)=~0 on the points r = m a + n b ,  D s ( r ) # 0  
on the points  r = tp to be called representative points 
of the stacking, and D(r)~= 0 on the points r = 
m a + n b + t p  = tmnp, to be called representative points 
of the distribution. 

In  Fig. 1 these functions are shown schematical ly  
on a section parallel  to b and e of real and of reciprocal 
space for u~ = 0 and vi = ±½. I t  can thus  be taken  
to refer to the first three examples  given above, if 
the vectors s 1 = ½ a + ~ b + e  = ½ b ' + e  and s 2 =  

1 2 - ( ~ a + ~ b ) + e  = - ½ b ' + e  are chosen as stacking vec- 
tors and the section is chosen parallel  to these vectors. 

Fig. l(a)(i)  gives the  dis t r ibut ion wi th in  the  single 
layer DA(r) and  Fig. l(a)(ii)  its F- t ransform GA(r*). 
In  Fig. l(b) (i) the representat ive points of a par t icular  
s tacking are shown, which, as can be seen from Fig. 
l(c) (i), are bound to he on a lattice, to be called 
the  stacking lattice. Therefore Gs(r*) mus t  necessarily 
be periodic, with periods corresponding to a latt ice 
reciprocal to the stacking latt ice and called the reci- 
procal stacking lattice (Fig. l(c)(it)). In  Fig. l(d)(i) the 
representat ive points of the dis t r ibut ion are shown. 
They  he, as can be seen in Fig. l(e)(i), on a sub- 
latt ice of the stacking lattice, called the distribution 
lattice, and G(r*) is therefore (Fig. l(e)(ii) and  Fig. 
l(d)(ii)) periodic with periods corresponding to the 
latt ice reciprocal to the  dis t r ibut ion latt ice and called 
the reciprocal distribution lattice. This periodici ty is 

• independent  of the sequence of s tacking vectors. 
• The functions G](r*) corresponding to various pos- 

sible stackings have one more feature in common:  
they  assume their  m a x i m u m  values on points r *  =le* 
(where l is an integer) and are equal  to zero on points 
r* = ~e* for which ~ is not  integral  or very  near ly  
so. This follows from the fact  tha t  the projection of 
the representat ive stacking points  along a and b on 
to a line parallel  to e results in a row of equidis tant  
points at  pe whatever  the stacking m a y  be. 

I t  is easy to see tha t  GA(r*) =~0 for r * =  
h a * + k b * +  te* only (or for values of r* very near  to 

those), i.e. on a system of parallel  rods - - to  be called 
reciprocal-lattice rods. 

As a result  of t~hese features, there are in our example  
some reciprocal-lattice rods, to be exact  one-third of 
the total,  on which G(r*) = G(h, k, $) = 0, except for 

= 1 where [G(r*)[ assumes its m a x i m u m  value. 
These points  in reciprocal space correspond to sharp 
reflexions and will be called sharp points. Other 
reciprocal-lattice rods will be called diffuse rods. 

The reciprocal-lattice rods are a result  of the two- 
dimensional  periodici ty of the layers, and are thus  a 
feature of all OD-structures built  of such layers. Sharp 
points on the reciprocal-lattice rod through the origin 
result  from the  s y m m e t r y  relations obtaining between 
the different s tacking vectors, and are thus  a feature 
of all OD-structures of type  A (and also of some of 
the other types). 

A periodici ty of Gs(r* ), however, resu l t s - -as  can 
easily be shown- - in  general only for OD-structures of 
type  A with not more than  four different representa- 
t ive stacking vectors sz, s~, sa, s~, or with six represen- 
ta t ive  stacking vectors related by a hexad;  this  is so 
because in these cases the representat ive stacking 
vectors define a s tacking latt ice on which all the 
representat ive points of the stacking are bound to lie 
(see Fig. 2). The representat ive points of the  stacking 
mus t  he on a stacking latt ice (and thus  there results 
a corresponding periodicity of Gs(r*)) even if there are 
six or more different s tacking vectors, provided the 
components ui and v~ of the stacking vectors are 
rat ional  numbers  : 

Ui = /~i/qa, Vi = Vi/qb (12) 

(qa, qb, /~i, Vi integers). 
Equa t ion  (12) is also the condition for the represen- 

ta t ive  points of the dis t r ibut ion to lie on a l a t t i ce - -  
the dis t r ibut ion l a t t i ce - - and  thus for G(r*) to be 
periodic. If  condition (12) holds, there are sharp points  
on reciprocal-lattice rods not  passing through the 
origin and the recognition of these sharp points 
provides the easiest way to detect the periodicity of 
G(r*) in= disordered structures. 
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As the .value of G(r*) is the same for all sharp points, 
the intensities of these reflect the symmetry  of 
IFo(r*)l 2, i.e. the Laue symmetry  corresponding to 
A-symmet ry - - to  be called A*-symmetry. 

This A*-symmetry may reveal even fully ordered 
structures as members of a family of OD-structures, 
although there are no diffuse rods in these cases. This 
~ 1  be the ease, if the A*-symmetry is higher than 
the Laue symmetry  of the ordered structure, as, for 
example, in triclinic fl-wollastonite (Jeffery, 1953). 
Then the A*-symmetry  will be a property of part  of 
the reflexions only: of the sharp points, i.e. the points 
which are sharp for all members of the family. From 
the distribution of these A*-symmetrical reflexions or 
sharp points the reciprocal distribution lattice, and 
hence the (real) distribution lattice, may be deduced. 
This and Vtie A*-symmetry itself may be of use in 
solving even an ordered structure. 

The G(r*) will, in general, be complex quantities. 
If they were known for all points in reciprocal space 
the distribution of representative points could be 
deduced. An a t tempt  to deduce a basal projection of 
such a distribution was made by Cowley (1953) for 
the disordered form of orthoboric acid. His deduction, 
however, does not seem justifiable as he assumed the 
G(hkO) to be real and positive. 

O D - s t r u c t u r e s  of type  B 

There exist structures built of layers which have very 
much in common with the structures discussed above 
but do not consist of one set of equal translatable 
layers only. We shall now discuss an example of such 
a structure and, in the course of this discussion, arrive 
at a definition of what I propose to call OD-structures 
of type B. 

Example: decaborane, B10H14 
The F-transform of this structure consists, as 

Kasper, Lueht  & Harker (1950) observed, of a system 
of reciprocal-lattice rods (hu/) parallel to the b* axist. 
The rods with h even bear sharp points at ~ = k = 2n, 
whereas the rods with h odd are diffuse and have 
their maxima at  71 = k odd and almost vanish at  

= k even {Fig. 3). This disposition of diffuse rods 
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Fig. 3. Decaborane: position of sharp points and diffuse rods 
in reciprocal space and corresponding distribution lattice 
in real space. 

t Choice of axes as given by the authors quoted. 

and sharp points could not be the result of an OD- 
structure of type A. This becomes evident if we s tar t  
with the discussion along the lines given above. Ob- 
viously, the structure must consist of layers with 
periodicity corresponding to the translations a and c. 
The sharp points form an orthorhombic reciprocal 
distribution lattice with the constants 

A* = 2 a * ,  B * = 2 b * ,  C* = c * .  

Thus we arrive at a distribution lattice on which all 
representative points of the distribution would have 
to lie with the constants 

A = ½ a ,  B = ½ b ,  C = c .  

B obviously corresponds to the vector denoted by e 
above. The points of this distribution lattice cannot 
be reached by an addition of stacking vectors related 
by any symmetry  element, but  only by the vectors 
a, b and 

s 1 = B = ½ b ,  s 2 =  B + A = ½ b + ½ a ,  

or vectors differing from the latter by ma÷nc. Thus 
the explanation of this structure as OD-structure of 
type A fails. 

The following systematic absences of diffuse rods 
and sharp points were observed by the authors: 

(i) The diffuse rods (h~0) with h odd are missing. 
(ii) The sharp points (hOl) with h even and ½h+l odd 

are missing. 
(iii) The sharp points (0kl) with ½k+l odd are missing. 

Rule (i) shows the presence of an a glide perpendic- 
ular to c in the structure and thus - -as  the glide direc- 
tion is parallel to the layer plane-- in the single layer. 
This glide is thus to be denoted by (a).  

Rule (ii) would result from an n glide perpendicular 
to b with a glide component of either ½c+¼a or 
½c-¼a. We shall denote these operations by {nl,½} 
and {nl, ~), respectively. Neither of these can, how- 
ever, by present as symmetry  element in the proper 
sense of the word as their repetition would in either ease 
lead to a translation c+½a, which is not present. 
Rule (ii) would, however, also result, if the points of 
any given layer, say the layer number p, were related 
to the (p÷ 1)st layer by either (n~, ½) or {n~, ~} and thus 
the (p+ 1)st layer to the pth layer by either {nl, ~} or 
(nl, ½). We propose to call such operations relating a 
certain par t  of space to another part  of space a- 
operations and denote them by { )-brackets. The 
limited range of the a-operations {nl,½} and (n~, ~} 
present in decaborane actually gives the clue to the 
disorder effect which manifests itself in the diffuse 
reciprocal-lattice rods. 

A pair of layers consisting of a layer p related to the 
(p + 1)st layer through the a-operation {nl, ½} is clearly 
geometrically (and hence energetically) equivalent to 
a similar pair with {nl, ½ / replaced by {nl, i ). This is 
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Glide plane 

In  position* Glide 
y' ---- ½(2p-- 1) component 

Table 1. a-Operations in decaborane 
Screw dyad Glide plane 

^ ^ 

"In position* Screw Glide compo- 
y" ---- ½(2p-- 1) compo- nent  In  

z = -I- ~} nent  ½(eq-c) position 

Screw dyad  
^ 

Screw 
component In  position 

½e z = ~{- 

{3]} - ~ a  

(nl, ~} ½c--¼a {2½} ¼a 

{n} 

N' 

x = ~, ~ {2~} x = ~, i 

) for p odd 
- - - - - >  for p even 

* For transition from pth  layer to (P-k 1)st layer; y'  in fractions of e. 

obvious, if we note that  the opposite is true for the 
sequence of layers (p+l )s t  to pth. 

Now the most simple assumption is that  the layers 
of such a pair are also related by an n glide a-operation 
{n} corresponding to rule Off), i.e. a a-glide plane per- 
pendicular to a with glide component ~b + ½c -- ½e + ½c. 
This assumption implies that  the single layers possess 
rotation dyads <_2) parallel to c alternating with sym- 
metry centres <1> (see Fig. 4). Thus the A-symmetry 

i • , 

b v. 
--[3 - - e  

Fig. 4. Distribution of molecules, A-symmetry  and a-opera- 
tions in deeaborane. The molecules in z ---- ½ are drawn in 
thin lines, those in z ---- 0 in thick lines. Shaded molecules 
are seen lying with the convex side upwards,  unshaded 
with the convex side downwards.  A-symmetry  elements in 
< >-brackets, a-operations in { }-brackets. 

Pl(1)2/a results from this assumption. Both sides of 
the single layer are thus equivalent and the relation 
between the second and the third layer may be either 
{nl,½} or {nl,~}. If {nl, ½} is followed by {hi, ½}, t h e  
a-operation {n} leading from the first to the second 
layer is not continued from the second to the third 
layer, but transposed by ¼a. If {nl, ½} is followed by 
{n,,~}, the a-operation {n} is continued. The equiv- 
alence of the transposed a-operation {n}' with {n} also 
results from the fact that  these operations are related 
by the rotation dyads and symmetry centres of A- 

symmetry. Table 1 gives the full list of relations ob- 
taining between neighbouring layers: the a-operations 
described already as well as the resulting a-screw 
dyads with half the normal screw component {2½} 
parallel to a, and a-screw dyads {21} with screw compo- 
nent ½e parallel to b. 

The layers of the structure do not all belong to one 
set of translatable layers, but all even-numbered layers 
belong to one such set and so do all odd-numbered 
layers. OD-structures of that  kind--i.e, consisting of 
substantially equal layers which, however, do not all 
belong to one set of translatable layers but to two or 
more such sets--we propose to call OD-structures of 
type B, provided neighbouring layers are related by 
one of a set of related a-operations. 

The vectors giving the displacement necessary to 
bring a layer into coincidence with the next translat- 
able layer in our case the next-but-one layer--are 
to be called (composite) stacking vectors. They can be 
obtained from the a-operations and are listed for 
decaborane in Table 2. 

Table 2. Stacking vector resulting from a-operations 
in decaborane 

(The operations given on the left side of Table 1 only are given) 

a-Operations; 
^ Stacking vector;  

transit ion transition transit ion 
pth  --> ( p +  1)st (pq- 1)st-~ (pq-2)nd pth -+ (p-k2)nd 

layer layer layer 

{nl, ½} {2]} {nl, ½} {2~} ½(a~-b) = sg. 

{nl, ~} {2½} {n,, ½} {2~} ½b = s,  

= 

As we see, the stacking vectors for each of the sets 
of translatable layers are just the vectors we had 
already deduced from the reciprocal distribution lat- 
tice. Thus each set taken separately gives a distribu- 
tion of diffuse rods and sharp spots in reciprocal space, 
as observed, and the contributions of the two sets 
superimpose. 

A thorough discussion shows that  the assumptions 
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made above are not only the most simple but also the 
only assumptions compatible with the observed distri- 
bution of sharp points and diffuse rods in reciprocal 
space and leading to geometrically equivalent opera- 
tions transforming one layer into the neighbouring 
one. 

A-symmetry and a-operations deduced here are in 
entire agreement with the result of the full structure 
analysis carried out by Kasper et al. (1950), as Fig. 4 
shows; this gives a succession of layers possible ac- 
cording to their paper, with the symbols of A-sym- 
metry and a-operations added. 

I t  is not likely that  the deduction of A-symmetry 
and a-operations will in all cases be unique, as in the 
example just discussed. I t  is, however, very probable 
that  much may be learned in all cases from a thorough 
discussion. 

More examples of OD-structures of type B will have 
to be discussed before a systematic theory of such 
structures can be attempted. 

We may, however, note in passing that  type A 
structures may be considered as special cases of type B 
structures: the stacking vectors of an OD-structure 
of type A may be regarded as special kinds of a- 
operations. Further a-operations follow from A-sym- 
metry and the stacking vectors; in our first example, 
in the close-packed structures, there are a-glide planes 
perpendicular to e in position z = p+½ with glide 
component + (½a +§b), a-screw dyads {21} parallel to a 
in position y = ±~, z = p+½ and a-screw dyads {22} 
parallel to e in positions x = ½, y = ~ or x -- 16, y = ½. 
As the A-symmetry and the stacking vectors in the 
graphite structures are the same as in the close-packed 
structures the a-operations are also the same. In the 
SiC structures, of these a-operations only the a-screw 
dyads {22} are present. 

In spite of this close relation between type A and 
type B structures it seems advisable to me to distin- 
guish between them. 

OD-structures  of type C 

Another type of structures--to be called OD-structures 
of type C--seems to be present in the chlorites (Brind- 
ley, Oughton & Robinson. 1950). These consist of two 
or more sets of translatable layers, some of which 
differ also in substance. These may again--thanks 
to their A-symmetry--be placed in two or more ways 
relative to one another. 

OD-structures  of the second kind 

Obviously structures consisting of rods with one- 
dimensional periodicity may show similar order- 
disorder effects. I propose to call such rod-structures 
OD-structures of the second kind to distinguish them 
from the layer structures (type A, B and C)discussed 
above (to be called OD-structures of the first kind). 

For the treatment of OD-structures of the second 
kind, which promise to be rather more complicated 

that  those of the first kind, some preliminary work 
would have to be carried through. I t  is difficult to say 
whether OD-structures of the second kind are indeed 
of lesser importance or whether such structures, 
though existing, have frequently escaped recognition 
as such. 

Classification of OD-structures  of the first kind 

We may now attempt a rough classification of OD- 
structures of the first kind. These consist of layers 
with layer planes parallel to each other, which either 
form one set of translatable layers or belong to several 
such layers. 

Type A : All layers belong to one set of translatable 
layers. Examples: cobalt, graphite, zincblende, wurt- 
zite, silicon carbide. 

Type B: All layers are substantially equal, but 
belong to two or more different interleaved sets of 
translatable layers. Successive layers belong to dif- 
ferent sets and are related by a-operations. 

Type C: There are several sets of translatable layers 
some of which differ in substance. 

I wish to thank Dr W. A. Wooster, who read two 
versions of the manuscript and made some valuable 
suggestions concerning the mode of presentation and 
nomenclature. I also had the opportunity to discuss 
the content of this paper with a number of workers 
in the field. I wish to express my thanks to them. 

APPENDIX I 

Proposal  for international symbols  for the 80 
plane groups in three dimensions  

As has been stated in the International Tables for X-ray 
Crystallography (1952, p. 56), the 80 plane groups can 
easily be deduced from the 230 space groups. In view 
of this and the fact that  the international symbols 
for the latter are familiar to all crystallographers 
I propose the following nomenclature: 

The symbols P, C, 2, 21, a, b, n etc. retain their 
well known meaning. The sequence of symbols is 
exactly as in space-group notation, except for the 
necessity to add in certain cases (e.g. in the mono- 
clinic groups) 'monad axes' 1. The direction in which 
there is no periodicity is noted by putting the corre- 
sponding symmetry symbols in round brackets. The 
direction of mi~ing 1)¢riodicity is preferably chosen 
as the c axis. Monoclinic groups with the monoclinic 
axis perpendicular to the layer plane (thus corre- 
sponding to oblique two-dimensional lattices) are to be 
called 'monoclinic I', monoclinic groups with the 
monoclinic axis parallel to the layer plane (corre- 
sponding to rectangular two-dimensional lattices) are 
to be called 'monoclinic II ' .  If the axis of missing 
periodicity is called the c axis, monoclinic I groups 
are describable with the 1st setting (see International 
Tables), and monoclinic II groups with the 2nd setting. 
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A P P E N D I X  II 

G l o s s a r y  of  t e r m s  

Composite stacking vectors: see stacking vectors. 
Diffuse (reciprocal lattice) rods: reciprocal-lattice rods 

on which there are no sharp points. 
Distribution function of a layer: 

DA(r) = Z Z ~ ( r - m a - n b )  
m n 

characteristic of the distribution of structural units 
within a layer. 

Distribution function of the stacking: 

D~(r) = 2:  ~ ( r - t p )  
p 

characteristic of the distribution of layers within 
the structure. 

Distribution function of the structure: 

D(r)  = _~ Z ~ ~ ( r - m a - n b - t p )  
m n p 

characteristic of the distribution of structural units 
within the structure. 

Distribution lattice: lattice on which the representa- 
tive points of the distribution must necessarily lie 
whatever the sequence of stacking vectors. 

Family of 0D-structures:  a set of 0D-structures con- 
sisting of the same kind of layers in an arrangement 
governed by the same set of stacking vectors (for 
structures of type A) or a-operations (for structures 
of type B). Different members of a family differ by 
the sequence of stacking vectors or the sequence of 
a-operations, respectively. Periodic sequences are 
present in fully ordered members of a family. 

Layer plane: plane defined by the translations a and b 
of the single layer. 

0D-structures:  for classification see text. 
a-operations: operations bringing a certain part  of 

space (e.g. one layer) into coincidence with another 
p a r t  of space (another layer). 

Reciprocal distribution lattice: lattice reciprocal to 
the distribution lattice, thus corresponding to the 
periodicity of G(r*). 

Reciprocal-lattice rods: rods in reciprocal space on 
which GA(r*) 4= 0. 

Reciprocal stacking lattice: lattice reciprocal to the 
stacking lattice, thus corresponding to the perio- 
dicity of G,(r*). 

Representative points of the distribution: the points 
tmnp = tp + ma + nb. ,~ 

Representative points of the stacking: the points 
tp = sum of the first p stacking vectors (in the 
sequence actually present in the structure). 

Set of translatable layers: set of layers which may  be 
brought into coincidence with each other by parallel 
displacement. 

Sharp points: lattice points of the reciprocal distribu- 
tion lattice leading to sharp reflexions on X-ray 

photographs whatever the sequence of stacking 
vectors may be. 

Stacking lattice: lattice on which the representative 
points of the stacking must necessarily lie whatever 
the sequence of stacking vectors may be. 

Stacking vector, si: vector giving the parallel dis- 
placement necessary to bring a certain layer of an 
0D-structure  of type A into coincidence with the 
neighbouring layer. 0D-structures of type A are 
characterized by the fact that  there are at least two 
stacking vectors related to each other or the inverse 
of the other by A-symmetry.  

Composite stacking vector, si: vector giving the par- 
allel displacement necessary to bring a certain layer 
of an 0D-structure of type B or C into coincidence 
with the next layer belonging to the same set of 
translatable layers. The composite stacking vectors 
are the result of successive a-operations. 

Structural unit of an 0D-structure:  part  of a single 
layer of the structure, by the twofold periodic 
repetition of which the whole layer may be built. 
The structural unit is bounded by two pairs of 
parallel planes so that  the electron density ~0(r) of 
the structural unit is equal to zero outside a region 

0 < x < l ,  0 < y < l ,  
where 

r = x a + y b + z e ;  

a and b are translations of the periodicity of the 
layer and a, b and e are chosen corresponding to 
the symmetry  of the single layer. 

q-symmetry:  minimum symmetry  which a member of 
a given family of 0D-structures must necessarily 
possess. 

A-symmetry:  symmetry  group (one of the 80 plane 
groups in 3 dimensions, see Appendix I) of a single 
layer of the structure. 
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